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Abstract. In this paper we study fundamental equations of geodesic mappings of manifolds with affine
and projective connection onto (pseudo-) Riemannian manifolds with respect to the smoothness class of
these geometric objects. We prove that the natural smoothness class of these problems is preserved.

1. Introduction and Basis Definitions

To theory of geodetic mappings and transformations were devoted many papers, these results are
formulated in large number of researchs and monographs [1], [2], [3], [4], [5], [7], [8], [9], [10], [11], [12], [13],
[14], [16], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [30], [31], [32], [33], [34], [35], [36], [37], etc.

First we studied the general dependence of geodesic mappings of manifolds with affine and projective
connection onto (pseudo-) Riemannian manifolds in dependence on the smoothness class of these geometric
objects. We presented well known facts, which were proved by H. Weyl [37], T. Thomas [35], J. Mikeš and
V. Berezovski [21], see [5], [20], [25], [26], [30], [32], [36].

In these results no details about the smoothness class of the metric, resp. connection, were stressed.
They were formulated as “for sufficiently smooth” geometric objects.

In the paper [14, 15] we proved that these mappings preserve the smoothness class of metrics of
geodetically equivalent (pseudo-) Riemannian manifolds. We prove that this property generalizes in a
natural way for a more general case.
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2. Geodesic Mapping Theory for Manifolds with Affine and Projective Connections

Let An = (M,∇) and Ān = (M̄, ∇̄) be manifolds with affine connections ∇ and ∇̄, respectively, without
torsion.

Definition 2.1. A diffeomorphism f : An → Ān is called a geodesic mapping of An onto Ān if f maps any geodesic in
An onto a geodesic in Ān.

A manifold An admits a geodesic mapping onto Ān if and only if the Levi-Civita equations (H. Weyl [37],
see [5, p. 56], [25, p. 130], [26, p. 166], [32, p. 72]):

∇̄XY = ∇XY + ψ(X)Y + ψ(Y)X (1)

hold for any tangent fields X,Y and where ψ is a differential form on M (= M̄). If ψ ≡ 0 then f is affine or
trivially geodesic.

Eliminating ψ from the formula (1) T. Thomas [35], see [5, p. 98], [25, p. 132], obtained that equation (1)
is equivalent to

Π̄(X,Y) = Π(X,Y) for all tangent vectors X,Y, (2)

where

Π(X,Y) = ∇(X,Y) −
1

n + 1
(trace(V → ∇VX) · Y + trace(V → ∇VY) · X)

is the Thomas’ projective parameter or Thomas’ object of projective connection.
A geometric object Π that transforms according to a similar transformation law as Thomas’ projective

parameters is called a projective connection, and manifolds on which an object of projective connection is
defined is called a manifold with projective connection, denoted by Pn. Such manifolds represent an obvious
generalization of affine connection manifolds.

A projective connection on Pn will be denoted by H. Obviously, H is a mapping TPn × TPn → TPn, i.e.
(X,Y) 7→ HXY. Thus, we denote a manifold M with projective connection H by Pn = (M,H). See [5, p. 99], [6].

We restricted ourselves to the study of a coordinate neighborhood (U, x) of the points p ∈ An (Pn) and
f (p) ∈ Ān (P̄n). The points p and f (p) have the same coordinates x = (x1, . . . , xn).

We assume that An, Ān, Pn, P̄n ∈ Cr (∇, ∇̄,H, H̄ ∈ Cr) if their components Γh
ij(x), Γ̄h

ij(x),Πh
ij(x), Π̄h

ij(x) ∈ Cr

on (U, x), respectively. Here Cr is the smoothness class. On the other hand, the manifold M which these
structures exist, must have a class smoothness Cr+2. This means that the atlas on M is of class Cr+2, i.e. for
the non disjunct charts (U, x) and (U′, x′) on (U ∩U′) it is true that the transformation x′ = x′(x) ∈ Cr+2.

Formulae (1) and (2) in the common system (U, x) have the local form:

Γ̄h
ij(x) = Γh

ij(x) + ψi(x)δh
j + ψ j(x)δh

i and Π̄h
ij(x) = Πh

ij(x),

respectively, where ψi are components of ψ and δh
i is the Kronecker delta.

It is seen that in a manifold An = (M,∇) with affine connections ∇ there exists a projective connection
H (i.e. Thomas projective parameter) with the same smoothness. The opposite statement is not valid, for
example if ∇ ∈ Cr (⇒ H ∈ Cr and also H̄ ∈ Cr) and ψ(x) ∈ C0, then ∇̄ ∈ C0.

In the paper [12] we presented a construction that the existing ∇ on M guarantees on Pn = (M,H).
Moreover, the following theorem holds:

Theorem 2.2. An arbitrary manifold Pn = (M,H) ∈ Cr admits a global geodesic mapping onto a manifold Ān
= (M, ∇̄) ∈ Cr and, moreover, for which a formula trace(V → ∇̄V)X = ∇XG holds for arbitrary X and a function G
on M, i.e. Ān is an equiaffine manifold and ∇̄ is an equiaffine connection. Moreover, if r ≥ 1 the Ricci tensor on Ān is
symmetric.
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Proof. It is known that on the whole manifold M ∈ Cr+2 exists globally a sufficiently smooth metric 1̂ ∈ Cr+1.
For our purpose it is sufficient if 1̂ ∈ Cr+1, i.e. the components 1̂i j of 1̂ in a coordinate domain of M are
functions of type Cr+1. We denote by ∇̂ the Levi-Civita connection of 1̂i j, and, evidently, ∇̂ ∈ Cr.

We define τ(X) = 1
n+1 trace(V 7→ ∇̂VX) and we construct ∇̄ in the following way

∇̄XY = HXY + τ(X) · Y + τ(Y) · X. (3)

It is easily seen that ∇̄ constructed in this way is an affine connection on M. The components of the object
∇̄ in the coordinate system (U, x) can be written in the form: Γ̄h

ij(x) = Πh
ij(x) + τi(x) · δh

j + τ j(x) · δh
i where

Πh
ij and Γ̄h

ij are components of the projective connection H and the affine connection ∇̄, respectively, and

τi = 1
n+1 ∂G/∂xi, G = ln

√
|det ‖1̂i j‖|. It is obvious that Pn is geodesically mapped onto Ān =(M, ∇̄), and,

evidently because Γ̄h
ij ∈ Cr, Ān ∈ Cr.

Insofar as Πα
αi(x) = 0, then Γ̄ααi(x) = ∂G/∂xi, i.e. trace(V → ∇̄V)X = ∇XG. Hence follows that Ān has an

equiaffine connection [26, p. 151]. Moreover, if ∇ ∈ C1 then the Ricci tensor Ric is symmetric ([25, p. 35], [26,
p. 151]).

3. Geodesic Mappings from Equiaffine Manifolds onto (pseudo-) Riemannian Manifolds

Let manifold An = (M,∇) ∈ C0 admit a geodesic mapping onto a (pseudo-) Riemannian manifold V̄n =
(M, 1̄) ∈ C1, i.e. components 1̄i j(x) ∈ C1(U). It is known [21], see [25, p. 145], that equations (1) are equivalent
to the following Levi-Civita equations

∇k1̄i j = 2ψk1̄i j + ψi1̄ jk + ψ1̄ik. (4)

If An is an equiaffine manifold then ψ have the following form

ψi = ∂iΨ, Ψ =
1

n + 1
ln
√
|det 1̄| − ρ, ∂iρ =

1
n + 1

Γααi, ∂i = ∂/∂xi,

and Mikeš and Berezovski [32], see [25, p. 150], proved that the Levi-Civita equations (1) and (4) are
equivalent to

∇kai j = λiδ j
k + λ jδi

k, (5)

where

(a) ai j = e 2Ψ 1̄i j; (b) λi = − e 2Ψ 1̄iαψα. (6)

Here ‖1̄i j
‖ = ‖1̄i j‖

−1. On the other hand:

1̄i j = e 2Ψ1̂i j, Ψ = ln
√
|det 1̂| − ρ, ‖1̂i j‖ = ‖ai j

‖
−1. (7)

Using the equation Πh
ij(x) = Γh

ij(x) (see (37.4) in [5, p. 105]), where Π is a projective connection and Γ is

normal affine connection (it is also equi-affine), we after substitution Γh
ij(x) 7→ Πh

ij(x) into (5) have equation
(2.3) in [4], immediately.

Furthermore, we assume that An = (M,∇) ∈ C1 and V̄n = (M, 1̄) ∈ C2. In this case, the integrability
conditions of the equations (5) from the Ricci identity∇l∇kai j

−∇k∇lai j = −aiαR j
αkl−a jαRi

αkl have the following
form

−aiαR j
αkl − a jαRi

αkl = δi
k∇lλ

j + δ j
k∇lλ

i
− δi

l∇kλ
j
− δ j

l∇kλ
i, (8)

where Rh
ijk are components of the curvature (Riemannian) tensor R on An, and after contraction of the indices

i and k we get [21]

n∇lλ
j = µ δ j

l − a jαRαl − aαβR j
αβl , (9)

where µ = ∇αλα and Ri j = Rαiα j are components of the Ricci tensor Ric on An.



I. Hinterleitner, J. Mikeš / Filomat 29:6 (2015), 1245–1249 1248

4. Main Theorems

Let Vn = (M, 1) ∈ Cr be the (pseudo-) Riemannian manifold. If r ≥ 1 then its natural affine connection
∇ ∈ Cr−1 (i.e. the Levi-Civita connection) and projective connection H ∈ Cr−1; hence An = (M,∇) and Pn =
(M,H) be manifolds with affine and projective connection, respectively. The following theorems are true.

Theorem 4.1. If Pn ∈ Cr−1 (r > 2) admits geodesic mappings onto a (pseudo-) Riemannian manifold V̄n ∈ C2, then
V̄n ∈ Cr.

Theorem 4.2. If An ∈ Cr−1 (r > 2) admits geodesic mappings onto a (pseudo-) Riemannian manifold V̄n ∈ C2, then
V̄n ∈ Cr.

Based on the previous comments (at the end of the second section), it will be sufficient to prove the
validity of the second Theorem. Moreover, the manifold An can be an equiaffine manifold.

The proof of the Theorem 4.2 follows from the following lemmas.

Lemma 4.3 ([13]). Let λh
∈ C1 be a vector field and % a function. If ∂iλh

− % δh
i ∈ C1 then λh

∈ C2 and % ∈ C1.

Proof. The condition ∂iλh
− % δh

i ∈ C1 can be written in the following form

∂iλ
h
− %δh

i = f h
i (x), (10)

where f h
i (x) are functions of class C1. Evidently, % ∈ C0. For fixed but arbitrary indices h , i we integrate

(10) with respect to dxi:

λh = Λh +

∫ xi

xi
o

f h
i (x1, . . . , xi−1, t, xi+1, . . . , xn) dt,

where Λh is a function, which does not depend on xi.
Because of the existence of the partial derivatives of the functions λh and the above integrals (see [17,

p. 300]), also the derivatives ∂hΛ
h exist; in this proof we don’t use Einstein’s summation convention. Then

we can write (10) for h = i:

% = − f h
h + ∂hΛ

h +

∫ xi

xi
o

∂h f h
i (x1, . . . , xi−1, t, xi+1, . . . , xn) dt. (11)

Because the derivative with respect to xi of the right-hand side of (11) exists, the derivative of the function %
exists, too. Obviously ∂i% = ∂h f h

i − ∂i f h
h , therefore % ∈ C1 and from (10) follows λh

∈ C2.

In a similar way we can prove the following: if λh
∈ Cr (r ≥ 1) and ∂iλh

− %δh
i ∈ Cr then λh

∈ Cr+1 and % ∈ Cr.

Lemma 4.4. If An∈C2 admits a geodesic mapping onto V̄n∈C2, then V̄n∈C3.

Proof. In this case Mikeš’s and Berezovsky’s equations (5) and (9) hold. According to the assumptions,
Γh

ij ∈ C2 and 1̄i j ∈ C2. By a simple check-up we find Ψ ∈ C2, ψi ∈ C1, ai j ∈ C2, λi
∈ C1 and Rh

ijk,Ri j ∈ C1.
From the above-mentioned conditions we easily convince ourselves that we can write equation (9) in

the form (10), where
% = µ/n and f h

i = (−λαΓh
αi + a jαRαl − aαβR j

αβl)/n ∈ C1.

From Lemma 4.3 follows that λh
∈ C2, % ∈ C1, and evidently λi

∈ C2. Differentiating (5) twice we
convince ourselves that ai j

∈ C3. From this and formula (7) follows that also Ψ ∈ C3 and 1̄i j ∈ C3.

Further we notice that for geodesic mappings from An ∈ C2 onto V̄n ∈ C3 holds the third set of Mikeš’s
and Berezovsky’s equations [21]:

(n − 1)∇kµ = −2(n + 1)λαRαk + aαβ(Rαβ,k − 2Rαk,β). (12)

If An ∈ Cr−1 and V̄n ∈ C2, then by Lemma 4.4, V̄n ∈ C3 and (12) hold. Because Mikeš’s and Berezovsky’s
system (5), (9) and (12) is closed, we can differentiate equations (5) r times. So we convince ourselves that
ai j
∈ Cr, and also 1̄i j ∈ Cr (≡ V̄n ∈ Cr).
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[12] I. Hinterleiner, J. Mikeš, Fundamental equations of geodesic mappings and their generalizations, J. Math. Sci. (N. Y.) 174 (2011)
537–554; transl. from Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz., Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI),
Moscow 124 (2010) 7–34.
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[21] J. Mikeš, V. Berezovski, Geodesic mappings of affine-connected spaces onto Riemannian spaces, Colloq. Math. Soc. János Bolyai.

56 (1992) 491–494.
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[23] J. Mikeš, I. Hinterleitner, On geodesic mappings of manifolds with affine connection, Acta Math. Acad. Paedagog. Nyházi. (N.S.)
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